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Introduction

It is common to hear children as young as four years old utter the statement “all birds 
can fly”. This statement might seem rather ordinary and insignificant at first. However 
on closer scrutiny, one would discover that this statement holds plenty of weight. Why 
is that so? Because for children to conclude that “all birds can fly”, it seems to suggest 
that they have seen all species of birds and can therefore arrive at that remarkable 
conclusion. In reality however, it is extremely unlikely that children of that age have seen 
all species of birds available to make that conclusion, let alone experienced scientists 
who spend their lifetime studying birds. So how then are they able to arrive at that 
conclusion? What thinking processes are behind the statement that “all birds can fly”? 

Inductive Reasoning 

The ability to observe characteristics or properties about living things or inanimate 
objects in the surrounding natural environment and notice patterns is a natural 
inclination of the human mind (Mason, 1996). This inadvertently allows us to obtain 
scientific knowledge (Polya, 1945). It is second nature to observe that a few species of 
birds, such as crows or seagulls, can fly and naturally extend this reasoning to all other 
types of birds. Such is known as inductive reasoning, which is a process of analysing 
particular cases or observations and inferring to arrive at a general conclusion or rule 
(Polya, 1945). In other words, reasoning from particular instances is extended across 
all instances in order to reach a general conclusion. This is contingent upon detecting 
similarities across cases, which is espoused by Klauer (1988), and consists of looking for 
patterns and relationships within the given numerical data and figures (Neubert & Binko, 
1992). According to Klauer (1988, 1992), inductive reasoning involves methodically and 
rigorously comparing objects with the ultimate objective of seeking out similarities 
and differences amongst the specific cases or relations. One can therefore say that 
inductive reasoning adds to the presently available information (Klauer, 1999) which 
is not an easy feat. In fact, inductive reasoning has even been considered as an ability 
to produce fresh perspectives, a productive characteristic of humans (De Koning et al., 
2003; Sternberg & Gardner, 1983).

Importance of Inductive Reasoning 

Since inductive reasoning is such a natural ability of the human mind, its importance 
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to human society cannot be undermined. It is central to general human intelligence 
(Carroll, 1993) which underpins the performance in complex tasks from different 
subject content areas. The integral and foundational role that inductive reasoning 
plays in mathematics learning and problem solving (NCTM, 2000) is testament to its 
centrality and importance in human development. It is pervasively present and useful 
in many problem solving activities (Nisbett et al., 1983) and is therefore commonly 
used by many mathematics educators (Polya, 1954). In addition, inductive reasoning 
has been found to play an important role in developing expertise in a skill or content 
domain and has even been said to predict academic performance and test scores well 
(Pellegrino & Glaser, 1982). 

Inductive reasoning, being such an important ability in mathematics, can therefore be 
said to be fundamental to problem solving involving higher order thinking (HOT) skills. 
Behind the acquisition of HOT skills lies the ability to recognize patterns and generalise, 
which constitutes inductive reasoning. This ability is closely associated with a person’s 
knowledge of numbers and being able to identify relations within numbers (Haverty 
et al., 2000). Having “number sense”, which is having an instinctive feel for numbers 
together with its uses, interpretations and relationships (NCTM, 1991; Howden, 1989), 
underpins all these. According to Greeno (1991), “number sense” includes capabilities 
such as being able to flexibly compute mentally, estimation of numerical data and 
evaluation. All these can be developed in stages through exploration of numbers in 
various contexts and drawing relationships between them without being subjected to 
the constraints of available algorithms or formulas (Howden, 1989). 

The Singapore Mathematical Olympiad 

A context where “number sense” is pushed to its limits is mathematics competitions. 
In such competitions, knowledge is extended beyond the confines of the school 
curriculum to help students inculcate an appreciation for mathematics and learn 
advanced mathematical thinking skills which would not have been accorded primary 
importance in the school curriculum (Toh, 2012). A mathematics competition that 
perhaps best embodies the extension of knowledge beyond the school curriculum is 
the Singapore Mathematical Olympiad (SMO), which is arguably the most eminent 
national mathematics competition in Singapore. Every year, the SMO garners the most 
number of participating students in Singapore and information is readily available from 
the Singapore Mathematical Society publications (Toh, 2012). According to official 
documents, the objectives of the SMO are two-fold; (1) to test the ingenuity and 
mathematical problem-solving ability of participants, and (2) to discover and encourage 
mathematical talents in Singapore schools (Chua, Hang, Tay & Teo, 2007). 
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Objectives of Paper

With the two objectives of the SMO in mind, it is not hard to see the importance 
of having good “number sense” to effectively reason inductively in problem solving 
contexts. Since inductive reasoning is so vital, how then does it feature in the SMO? 
How do the questions in the SMO enunciate the features of inductive reasoning? How 
can inductive reasoning be used as a cognitive strategy to tackle questions in the SMO? 
These are questions that would be of interest in this paper. Hence, the main aim of this 
paper is to illustrate the importance of inductive reasoning in the context of the SMO 
questions by showing that it is an important cognitive tool for solving SMO problems. 

Inductive Reasoning in SMO Problems

To illustrate how inductive reasoning can be utilized in SMO problems, it is first necessary 
to reiterate what inductive reasoning is. Inductive reasoning, as seen from the above 
review of literature, is the process of analysing particular cases or observations and 
inferring to arrive at a general conclusion or rule. In the process of analysing particular 
cases, similarities, patterns and relationships are being drawn. The analysis of particular 
cases can be a very powerful vehicle or strategy for approaching problems such as those 
depicted in Figure 1.

Figure 1. Two SMO Questions of Inductive Reasoning Type 1.   

As calculators are not allowed in SMO, it would be very difficult to tell which number 
has the smallest value without converting the five numbers into a decimal form in Q1. 
As such, another strategy is needed to determine which number is the smallest. Using 
the idea of analysing particular cases, a particular case can be conjured that mirrors 
the ordered sequence of five numbers in Figure 1. Instead of using integers that are 
relatively large in both numerators and denominators, smaller integers could be used to 
draw a parallel. For instance,  and  could be used as a particular case that parallels the 
numbers in Figure 1. This set of numbers would be more manageable as it is not difficult 
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to convert them to decimals without the use of a calculator. One would notice that the 
numbers are indeed increasing from left to right. To induce from this observed pattern, 
another case can be examined to confirm that this observation is indeed applicable. For 
example, the case of  and   can be used to validate the pattern observed earlier. One 
would notice again that the numbers increase from left to right, thus adding credibility 
to the pattern observed earlier. With these two particular cases, one can therefore 
extend the reasoning beyond and reason inductively to reach the conclusion that the 
same pattern applies to the sequence of five numbers in Q1 of Figure 1. 

Q2 is not much different from Q1 in terms of the content knowledge and reasoning 
required. As with Q1, particular cases can be considered to find a pattern. In this case, 
it can be observed that , , , , ,  etc. One would notice that the last digit of each number 
repeats in a pattern, 9 and 1, for every two numbers. This observed pattern can be 
extended beyond those given above and one can arrive at the conclusion that the last 
digit of  is 1. However, looking for a pattern for the second last digit is more tedious as 
more numbers need to be written out to find a pattern as seen in Table 1 below. 

Table 1. Multiples of 9

At this juncture, it would become apparent that the last two digits repeat for every 
10 numbers and the pattern repeats again after . This pattern can then be extended 
beyond  and inductive reasoning can be performed. Therefore, for , the last two digit 
would occur at the fourth position, meaning that the last two digits of are the same as 
the last two digits of . 

Both questions in Figure 1 do not require advanced mathematical content knowledge 
and can be classified as a Category 1 question according to Toh (2012). However, for 
the purposes of this paper, the questions in Figure 1 shall be categorised as “inductive 
reasoning type 1”, which does require any advanced mathematical content knowledge.  

Another example of questions that highlight the power of inductive reasoning is shown 
in Figure 2, which shall be categorised as “inductive reasoning type 2”. Such questions 
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involve additional content knowledge of basic algebraic identities or other simple 
results such as the laws of logarithms. 

Figure 2. Two SMO Questions of Inductive Reasoning Type 2. 

In the case of Q3, a relation needs to be made to an algebraic identity, (a + b)(a - b) = 
a2 - b2 before inductive reasoning can occur. 2013 can be expressed as 2012 + 1 while 
2012 - 1 yields 2011. This would imply that 2013  2011 = 20122 - 1, which means that . 
The same idea can be used for  which will give 2013. At this point, a clear pattern has 
emerged and it can be induced that the final step is .    

Q4 is a very interesting question involving the knowledge of the laws of logarithm. At 
first glance, it seems that applying the laws of logarithm might suffice. However, on 
closer inspection, one would realize that elements of inductive reasoning are present 
also. One would be able to observe that the denominator, , in the first algebraic fraction 
can be simplified to using the law of logarithms. This implies that the first algebraic 
fraction is now . Similarly, the second algebraic fraction can be simplified to . At this 
point, a pattern can be observed in the way both algebraic fractions are simplified and 
one would notice that the denominators are  while the numerators follow the pattern  in 
the base of the logarithmic function, , in the denominator of each fraction. This pattern 
can be extended to the third algebraic fraction. It is evident therefore that some form 
of inductive reasoning is present in such a question.  

A third level of inductive reasoning that can be gathered from the SMO past year questions 
is the idea of relating to a “special” case or considering cases. This involves finding a 
similarity between the given question, a particular case, and drawing a connection to 
another “special” case or cases where the problem can be solved in a more simplified 
and manageable way. Such inductive reasoning will be known as “inductive reasoning 
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type 3” as seen in Q5 and Q6 in Figure 3.   

Figure 3. Two SMO Questions of Inductive Reasoning Type 3.

To simplify the problem in Q5, a “special” case where PQ is parallel to AB can be 
considered. In doing so, one must be able to visualize that quadrilateral PXCY has the 
same area as the quadrilateral formed when PX is parallel AB. This is accomplished by 
rotating the square PQRS clockwise about the point P until PX becomes parallel to AB. 
A smaller square would be obtained whose area can be calculated easily by taking cm2. 
The key to using a “special” case is to identify a similarity and draw a connection from 
the given case to the “special” case, which is part of inductive reasoning. 

In Q6, different cases need to be considered in order to find the number of non-
congruent triangles that can be formed. The similarity that needs to be present is 
the non-congruence of the triangles formed and the fact that each rod cannot be 
connected to form a longer rod, as implied by the statement “using each rod at most 
once”. Through a mere listing of the possibilities, one would discover that there are 
eight different triangles that can be formed. Considering the case that 3 rods are of the 
same length, three equilateral triangles can be formed of lengths 5 by 5 by 5, 17 by 17 
by 17 and 19 by 19 by 19. The case that 2 rods are of the same length and 1 rod of a 
different length needs to be considered next. For that, four isosceles triangles can be 
formed with lengths 17 by 17 by 5, 17 by 17 by 19, 19 by 19 by 5 and 19 by 19 by 17. 
One more case needs to be considered where the lengths of the triangle are 5 by 17 by 
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19. Hence, a total of eight different triangles can be formed.         

Table 2 summarizes the various types of inductive reasoning as established with 
reference to past year SMO questions. 

Table 2. Different Types of Inductive Reasoning in SMO Questions.
Type of Inductive Reasoning Description
Inductive Reasoning Type 1 Problems that do not require advanced 

mathematical content knowledge and rely  
largely on the process of inductive reasoning.

Inductive Reasoning Type 2 Problems that require requisite mathematical 
content knowledge and rely on the process of 
inductive reasoning.

Inductive Reasoning Type 2 Problems that require reference to a “special“ 
case or considering cases and rely on the process 
of inductive reasoning.

Implications for Teaching & Learning

Inductive reasoning is pervasively present in SMO questions as demonstrated above. 
It is therefore imperative that elements of inductive reasoning be made explicit in the 
mathematics teaching pedagogy, particularly in training students for mathematics 
competitions such as the SMO. On top of the requisite mathematical content knowledge, 
students should be taught to make observations or hypotheses about particular cases 
and test them with other cases. Once the hypothesis is shown to be applicable to other 
cases, it can be extended to all cases and a generalisation can be subsequently induced. 

However, caution needs to be exercised when engaging in inductive reasoning as there 
could be the possibility of cases that do not conform to the generalisation induced from 
particular cases. This is best illustrated by examining the statement in the introductory 
section which states that “all birds can fly”. A counterexample needs to be found to 
disprove this statement made as a result of inductive reasoning. In this case, one can 
point out that penguins, despite being birds, do not have the ability to fly. Thus, it is 
pertinent to also give opportunities for students to look for counterexamples to disprove 
their generalisations. All that is required is a single counterexample and the conclusion 
derived from inductive reasoning immediately fails. 

In some instances, a distinct pattern could be hard to observe due to the sheer magnitude 
of the numbers. An example would be Q2 in Figure 1. A sufficiently large number of 
cases need to be foregrounded in order to discover the pattern with the second last 
digit of each case. Hence, inductive reasoning might appear to be tedious but when 
accomplished, brings about an elegant solution to a perceived complex problem. 
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Conclusion

The objective of this paper is to demonstrate the importance of inductive reasoning 
in the SMO through showing that inductive reasoning can be used as a cognitive 
strategy to approach a variety of SMO questions. As highlighted above, relying solely 
on inductive reasoning to solve SMO questions is insufficient as a certain requisite 
level of mathematical content knowledge is also required. This was clearly portrayed 
in types 2 and 3 of inductive reasoning in Table 1. Despite that, it is undeniable that 
inductive reasoning is a fundamental and integral aspect of the SMO competition 
and mathematics in general. Therefore, there is great value in emphasizing inductive 
reasoning as a way of approaching mathematics problems and also as a cognitive 
strategy to solve mathematics problems, especially in mathematics competitions such 
as the SMO. 
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